

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Study of the Index Properties and the Predominance of Shear and Cohesion of Soil in the Lower Flood Plain of River Daya of Odisha

T.K. Lohani^{*1} and K.P. Dash²

^{*1,2}Department of Civil Engineering, Orissa Engineering College, Bhubaneswar, Odisha, , India

Abstract

River Daya flowing along the S-E of the state of Odisha has become a vital zone as far as the constructions and infrastructural developments are concerned. The entire subsurface is dominated by thick blend of clayey particles. Technocrats and Architects are not in a state of mind to provide suitable and stabilized foundations for those upcoming massive structures. The present study reflects the complex behavior of the soil parameters whose index and engineering properties have been determined strictly based on Indian Standard codes. The lithological variation of the land shows the entire region is spread by a thick blanket of clayey soil comprising of red and black soil, having high porosity with less permeability believed to be the end product of laterites and argillaceous materials, generating a swampy land throughout the year. But fortunately at a shallow to deep the stratum is defined by a compact, hard and impervious lateritic bed that gives ample support for a safe and stable foundation. Due to this, selection of foundation for construction purpose has become a challenging job. Two nos. of bore hole logs were drilled and collected from the field area to determine the index properties of the given samples as well as finding the safe bearing capacity of the soil.

Keywords: SPT, UDS, Borehole Logs, Shear Strength, Safe Bearing Capacity.

Introduction

The coastal alluvium forms unconsolidated material of which the study area is a part of that. These formations composed of sand, gravel, silt, clay and laterite. It has extensive unconfined and confined zone down to 150m - 300m. This zone is underlain by the Mahanadi graben extending in a NW-SE direction. The physical and index parameters of soil under the study area with an aerial extension of around 120km2 are completely dependent on the percolation and penetration of surface and groundwater. As the water of Daya is comparatively sweeter it may be assessed that impact of saline environment is too negligible on the soil characters. The spectacular hydrogeological set up of the study area owes to the varied geomorphic and geological set up which controls the physical and chemical behavior of the soil strata. Geotechnical parameters at various depths of soil strata along the river Daya is alarming. The primary reason behind the variation is the impact of coastal environment, rapid growth of population, abandonment of agricultural lands and conversion of cultivable lands to infrastructural projects. Stratigraphic, lithologic and geomorphic set ups partially control the performance of soil. The annual rainfall in the area also varies considerably from year to year which affects the physico-chemical characteristic of soil and its strength parameters.

Large number of central and state level organizations has been setup to investigate the soil strength in district and block level to meet the requirement for infrastructural development but still remarkable work is lacking.

The study area which extends from Sundarpada under Bhubaneswar Municipal Corporation to Harirajpur block of Khurda district a stretch of 12.3km locates between the latitude of 2008' to 20029' and longitude 85044' to 85073' constituting the part of Khurda district has its own importance due to massive infrastructural growth, mushrooming educational institutes and high rise apartments. The scope of work comprises of conducting detail soil investigation, laboratory testing, conducting and estimation of safe bearing capacity for the proposed work on drilling two nos. of boreholes.

Methodology

The methods of investigation consist of visual reconnaissance, drilling of boreholes, laboratory experiments and determination of soil parameters and analysis of the results. The field borehole drillings are extended up to 10m below Natural Ground Level (NGL) or refusal. This is followed by collection of UDS samples as per IS specification and finally the soil samples are

transported to the Civil engineering laboratory of Orissa Engineering college. The bulk density, moisture content, grain size analysis, shear strength, liquid limit, plastic limit, specific gravity, DFS, water absorption, porosity and density of the samples are determined in the laboratory (2010). For detailed laboratory investigation SPT is conducted at 1.5m intervals or at change of soil strata in different boreholes. Disturbed soil samples from both the boreholes were collected at 1.5m. SPT tests were conducted as per IS: 9640-1980 and IS: 2131-1981 respectively in different levels at the boreholes in a continuous manner using spilt-spoon samplers. The SPT sampler was lowered inside the borehole after drilling the required level and is driven by a 63.50kg hammer with a free fall of 750mm driving 450mm in three stages 150mm each and the number of blows for each 150mm penetration for 2nd and 3rd 150mm drive recorded as "N". Refusal is considered for N>100. In the course of drilling groundwater was encountered at a depth of 1.20m to 1.50m NGL.

Results and Discussion

No.	rre Hole f.	mple Depth m.	ıtural oisture ontent	dk Denisty	ecific avity		Attenberg 's Limit in %		id Ratio	eld SPT due	hesion in ¢/cm2	ıgle of earing sistance (φ) degrees	S in %	Soil Classificat ion
SI.	Bo Re	Sa in	C M Na	Bu	Sp Gr	LL	PL	PI	Vo	Fic Va	Ϋ́ε K	Ar Sh Re in	Ðł	
1	BH-1 SPT-1	1.50	20.31	1.097	2.28	51.00	26.00	25.00	1.5	7.00	xxxxx	xxxxxx	50.00	MH
2	BH-1 SPT-2	3.00	49.55	1.589	2.37	42.00	25.00	17.00	1.23	12.00	xxxxx	xxxxxx	40.00	OI
3	BH-1 UDS-1	4.50	44.74	1.492	2.33	43.00	25.00	18.00	1.26	15.00	0.46	4.50	40.00	Cl
4	BH-1 SPT-3	6.00	44.32	1.332	2.28	50.00	26.00	24.00	1.47	18.00	xxxxx	xxxxxx	50.00	MH
5	BH-1 SPT-4	7.50	45.25	1.543	2.37	42.00	25.00	17.00	1.23	21.00	xxxxx	xxxxxx	40.00	Cl
6	BH-1 SPT-5	9.00	45.26	1.543	2.37	42.00	25.00	17.00	1.23	24.00	xxxxx	xxxxxx	40.00	Cl
7	BH-1 SPT-6	10.00	25.76	1.410	2.40	39.00	24.00	15.00	1.14	28.00	xxxxx	xxxxxx	30.00	Ml
8	BH-2 SPT-1	1.50	47.65	1.362	2.28	50.00	26.00	24.00	1.47	6.00	xxxxx	xxxxxx	50.00	MH
9	BH-2 UDS-1	3.00	42.46	1.315	2.28	50.00	26.00	24.00	1.47	7.00	0.48	4.50	50.00	MH
10	BH-2 SPT-2	4.50	37.75	1.544	2.40	39.00	24.00	15.00	1.14	14.00	xxxxx	xxxxxx	30.00	Ml
11	BH-2 SPT-3	6.00	29.90	1.380	2.37	42.00	25.00	17.00	1.23	17.00	xxxxx	xxxxxx	40.00	Ol
12	BH-2 SPT-4	7.50	35.46	1.235	2.28	51.00	27.00	24.00	1.50	24.00	xxxxx	xxxxxx	50.00	MH
13	BH-2 SPT-5	9.00	35.92	1.239	2.28	51.00	27.00	24.00	1.50	26.00	xxxxx	xxxxxx	50.00	MH
14	BH-2 SPT-6	10.00	34.58	1.387	2.33	43.00	25.00	18.00	1.26	31.00	xxxxx	xxxxxx	40.00	Cl

Table 1: Result of different properties from different boreholes

The result of different properties of soil samples in the study area in shown in Table 1.

SLNo	Borehole	Sample	% Passing through IS sieve in mm							
51.190.	Ref.	Depth in m.	10.000	4.750	2.000	0.425	0.075	0.001		
1	BH-1 SPT-1	1.5	100.00	99.39	99.16	95.89	86.65	0.00		
2	BH-1 SPT-2	3.0	100.00	96.90	94.87	88.61	79.50	0.00		
3	BH-1 UDS-1	4.5	100.00	99.40	97.88	91.66	83.40	0.00		
4	BH-1 SPT-3	6.0	100.00	99.88	99.61	94.86	86.80	0.00		
5	BH-1 SPT-4	7.5	100.00	98.29	96.25	89.97	80.73	0.00		
6	BH-1 SPT-5	9.0	100.00	98.36	96.56	90.41	80.98	0.00		
7	BH-1 SPT-6	10.0	100.00	97.61	92.42	82.25	74.37	0.00		
8	BH-2 SPT-1	1.5	100.00	99.88	99.32	93.85	85.88	0.00		
9	BH-2 UDS-1	3.0	100.00	95.64	93.33	89.13	85.54	0.00		
10	BH-2 SPT-2	4.5	100.00	85.22	82.44	77.78	73.52	0.00		
11	BH-2 SPT-3	6.0	100.00	93.77	89.84	89.84	77.21	0.00		
12	BH-2 SPT-4	7.5	100.00	99.43	98.32	94.41	89.85	0.00		
13	BH-2 SPT-5	9.0	100.00	99.04	97.00	94.13	88.06	0.00		
14	BH-2 SPT-6	10.0	100.00	96.77	94.40	89.25	83.90	0.00		

Table 2 Grain size analysis of the soil samples in study area

A. Calculation of Safe Bearing Capacity from Strength Parameters (SPT Values)

	(At 1.50m)	Borehole	No-1				
Square Footing							
Field SPT Value	N =		7				
Overburden Press	sure		0.164kg/cm^2 ((IS: 2131-1981, Clause 3.6.1)		
Dilaitancy Factor	, the corrected SPT Value	e N [′]	7		(IS: 2131-1981, Clause 3.6.1)		
Taken correspond	ling C=		0.00 kg/	cm ²			
Angle of shearing	g resistance value Φ for zo	one =	29 degre	es			
Size of Footing =	2m. X 2m.		•				
Cohesion $C =$		0.00 kg/	cm ²	(IS: 272	0-1973, Part X)		
Angle of Shearin	g resistance $\Phi =$	29 degre	e	(IS: 2720-1978, Part XI)			
	$\Phi^{'}=$	20 degre	e	(IS: 272	0-1978, Part XII)		
Specific Gravity	Gs =	2.28		(IS: 272	0-1980, Part III)		
Void ratio e =		1.50		(IS: 2720-1973, Part X)			
Bulk density $\gamma =$		1.097 g/	сс	(IS: 2720-1973, Part II)			
Depth of foundat	ion Df =	1.50 m					
Assuming width	of footing B =	2.00 m	2.00 m				
$Q = [Df \bar{X} (\gamma)]/10$)	0.164 kg	0.164 kg/cm^2				
$B\gamma = (Bx\gamma)/10$		0.2194 kg/cm^2					
Bearing Capacit	y Factors (From IS: 640	3-1981, T	able-1)				
Φ&Φ'	Nc & Nc'	Nq & N	c'	Nγ & N ⁴	γ'		
29	28.256	16.85		20.09			
20	14.83	6.4		5.39			
Shape Factors (From IS: 6403-1981, Table-2)							
Sc = 1.3 $Sq =$	= 1.2 Sy $= 0.8$						
Depth Factors &	z Inclination Factors			(IS: 6403-1981, Table-2)			
$d_c = 1 + 0.2 X (D)$	f/B) X tan (45 + $\Phi/2$) = 1	.254					
$d_p = d_\gamma = 1.127$	i _c =						

Effect of War w' = 0.5	ter Tables					(IS: 6403-1981, Clause-5.1, 2.4)
In Case of Local Shear Failure for Circular Footing $Qd' = q (Nq' - 1)S_qd_qi_q + 0.5 B_\gamma N_{\gamma S\gamma d\gamma i\gamma}W$ = 1.197 + 0.266 $= 1.463 \text{ kg/cm}^2$						(IS: 6403-1981, Clause-5.1.2)
Ultimate Bea	ring Capacity Ob	tained fro	m Interp	olation	= Qd = 1.46	(IS: 6403-1981, Table-3) 53 kg/cm ²
Net Safe Bea	ring Capacity Co	nsidering l	Factor of	f Safety a => NS	as 3 = 0.48 BC=4.87	87 kg/cm ² t/m ²
B. Calculatio	on of Safe Bearing	Capacity	from Sti	rength Pa	arameters	s (SPT Values)
	(At 3.00m)			Boreho	le No. 1	
Square Footin	ig Isaa N		Depth	of founda	ation $= 3.0$	lom
Field SP1 Va	lue N =			12	2	(10, 2121, 1091, Classes 2 (1))
Dilaitancy Ea	ressure	SDT Voluo	N'	0.4081	kg/cm	(IS: 2131-1981, Clause 3.0.1) (IS: 2131, 1081, Clause 3.6, 1)
Takan correst	cior, the corrected ponding $C = 0.00 \text{ k}$	sr r value	IN	12		((15. 2151-1981, Clause 5.0.1)
Angle of shea	ring resistance val	g/сш њ Ф for zo	$n_{\rm P} = 32$	degrees		
Size of Footir	r = 2m X 2m		mc = 52	degrees		
Cohesion $C =$	ig – 2111 / 2111		0.00 kg/cm^2		$/cm^2$	
Angle of Shea	aring resistance	Φ=	32 degree		ee	
		$\Phi' =$	22 degree			
Specific Grav	ity	Gs=	2.28			
Void ratio e =	:			1.47		
Bulk density	γ =		1.362 g/cc			
Depth of four	idation $D_f =$		3.00 m			
Assuming wid	dth of footing $B =$		2.00 m			
$Q = [D_f X (\gamma)]$]/10		0.408 kg/cm^2			
$B\gamma = (Bx\gamma)/10$)		0.272 kg/cm^2			
Bearing Cap	acity Factors					(IS: 6403-1981, Table-1)
Φ&Φ'	Nc & Nc'		Nq & 1	Nc'	Nγ & N	lγ'
32	36.53		24.36		32.65	
22	17.18		8.104		7.586	
Shape Factor	rs (From IS: 6403-	•1981, Tab	ole-2)			
$S_c = 1.3$ S	$q = 1.2$ $S_{\gamma} = 0.8$	(F	TO	40.2 100		
Depth Factor $d_c = 1 + 0.2 X$	rs & Inclination F X (Df/B) X Tan (45	$+ \Phi/2) = 1$	om 18: 6 541	403-198	I, Table-2	.)
$d_p = d_\gamma = 1.27$			$i_{c} = i_{q} =$	= i _γ = 1		
Effect of Wa	ter Tables (From	IS: 6403-1	981, Cla	use-5.1,	2.4)	
w' = 0.5						
In case of Lo Qd'= q (Nq' - 4.417 + 4.417)	cal Shear Failure $1)S_q d_q i_q + 0.5 B_\gamma N$ 0.524	for Circul _{ySydyiy} W	ar Footi	ng (Clau	ise-5.1.2)	
= 4.941 kg	g/cm ²		-			
Ultimate Bea $Qd = 4.941 k_g$	ring Capacity Ob g/cm ²	tained fro	m Interp	olation	= Qd (Fro	om IS: 6403-1981, Table-3)
Net Safe Bea	ring Capacity Co	nsidering l	Factor of	f Safety a	as 3 = 1.64	47 kg/cm^2
				=	=>SBC=16	5.47 t/m^2

ISSN: 2277-9655

[Lohani, 2(3): March, 2013]

(At 1.5	0m)	Borehole No-2			
Square Footing		Depth of Foundation $= 1.50$ m			
Field SPT Value N =		6			
Overburden Pressure		0.204 kg/cm ² IS: 2131-1981, Clause 3.6.1			
Dilaitancy Factor, the corrected SF	'T Value N'	6 IS: 2131-1981, Clause 3.6.1			
Taken corresponding $C =$		0.00 kg/cm^2			
Angle of shearing resistance value	Φ for zone =	29 degrees			
Size of Footing = $2m$. X $2m$.		6			
Cohesion $C =$		0.00 kg/cm^2			
Angle of Shearing resistance	$\Phi =$	29 degree			
6 6	$\Phi' =$	20 degree			
Specific Gravity	Gs =	2.28			
Void ratio e =		1.47			
Bulk density $\gamma =$		1.362 g/cc			
Depth of foundation Df =		1.50 m			
Assuming width of footing $B =$		2.00 m			
$Q = [Df X (\gamma)]/10 =$		0.204 kg/cm^2			
$B\gamma = (Bx\gamma)/10 =$		0.272 kg/cm^2			
Bearing Capacity Factors (From	IS: 6403-1981, Ta	able-1)			
Φ&Φ' Νc & Nc'	Ng & N	c' Nγ & Nγ'			
29 28.256	16.85	20.09			
20 14.83	6.40	5.39			
Shape Factors (From IS: 6403-19	981, Table-2)				
$Sc = 1.3$ $Sq = 1.2$ $S\gamma =$	= 0.8				
Depth Factors & Inclination Fac	tors (From IS: 64	03-1981, Table-2)			
$d_c = 1 + 0.2 X (Df/B) X \tan (45 + 6)$	$\Phi/2) = 1.254$				
$d_{p} = d_{\gamma} = 1.127$	$i_{c} = i_{q} = i_{\gamma} = 1$				
Effect of Water Tables (From IS	: 6403-1981, Clau	se-5.1, 2.4)			
w' = 0.5					
In Case of Local Shear Failure for	or Circular Footir	ng (Clause-5.1.2)			
$Qd' = q(Nq' - 1)S_q d_q i_q + 0.5 B_\gamma N_{\gamma S \gamma}$	ν _{dγiγ} W				
= 1.489 + 0.33					
$= 1.819 \text{ kg/cm}^2$					
Ultimate Bearing Capacity Obta	ined from Interpo	lation = Qd (From IS: 6403-1981, Table-3)			
$= 1.819 \text{ kg/cm}^2$					
Net Safe Bearing Capacity Consi	idering Factor of S	Safety as $3 = 0.606 \text{ kg/cm}^2$			
		$=> NSBC = 6.06 \text{ t/m}^2$			

B. Calculation of Safe Bearing Capacity from Strength Parameters (SPT Values)

B. Calculation of Safe Bearing Capacity from Strength Parameters (UDS Values)

(At 3.00m)	Borehole No-2				
Cohesion	С	=	4.8 kg/cm^2		
Angle of Shearing Resistance	Φ	=	4.5 Degree		
	Φ'	=	3 Degree		
Void Ratio	e	=	1.47 (Medium)		
Specific Gravity	Gs	=	2.28		
Submersible Density	γ_{Sub}	=	0.52 g/cc		
Depth	$\mathrm{D_{f}}$	=	3m		
Let us assume width	В	=	2m		
Overburden pressure					
$Q = (D_f X \gamma_{Sub}) / 10 =$		0.155	5 kg/cm ²		
$B_{\gamma} = (B X \gamma_{Sub})/10 =$		0.104	4 kg/cm ²		
Bearing Capacity Factors (From IS: 6	403-1981, Ta	ble-1)			

Φ&Φ'	Nc & Nc'	Nq & Nc′	Νγ & Νγ'			
4.5	6.49	1.57	0.45			
3.0	5.95	1.342	0.27			
Shape Factors (H	From IS: 6403-1981, Tabl	e-2)				
Sc =1	$Sq = 1$ $S\gamma = 1$					
$d_c = 1 + 0.2 X (D$	f/B) X tan $(45 + \Phi/2) =$		1.325			
$d_p = d_\gamma = 1$		$i_{c} = i_{q} =$	$i_{\gamma} = 1$			
1		1				
Effect of Water ' $w' = 0.5$	Tables (From IS: 6403-19	81, Clause-5.1, 2	.4)			
w = 0.5	pear failure for continuous	strip footing				
d' = 2/3CNc'	$\pm a(Na' - 1)$	\perp 05 R N	Ιγ			
-1.904	+ 0.053	+ 0.014	· Y			
= 1.904 = 1.971 kg/cm	n^2	0.014				
Safe Bearing Ca	nacity Considering Facto	r of Safety as 3 =	0.657 kg/cm^2			
Suit Dearing Cu	pucity constanting fucto		$= 6.57 \text{ t/m}^2$			
Load carrying ca	apacity of single under re	amed bored cast	in-situ piles (IS-2	911 part-III. Clause 5.2.3.1) (a)		
Bore Hole No.1				(u)		
Type of Pile: Sing	gle under reamed bored pile	e				
Length of Pile (L):			6.0m		
Effective Length	of Pile (L _a):			5.5m		
Friction compone	ent not considered (1):			0.5m		
a) Bearing	& Friction in clavev stra	ta (0.5m – 6.0m i	.e. 5.5m)			
Length of Pile in	clayey strata $(L_e) =$,	550cm		
Diameter of Pile	$(\mathbf{D}) =$			30cm		
Under reamed bu	lb dia =			75m		
Cross Sectional a	rea of pile stem $(A_n) =$			707.14cm ²		
Cross Sectional a	rea of under reamed bulb (A	$A_a) = \pi/4 (D_u^2 - D_u^2)$	$p^{2}) =$	3712.43cm ²		
Cohesion of Soil	around the toe $(C_p) =$	u) (u	,	0.46 kg/cm^2		
Average cohesior	n of the soil along the pile s	tem =		0.43 kg/cm^2		
Average cohesior	n of the soil around the und	er ream bulb (C'_a)	=	0.43 kg/cm^2		
Reduction Factor	for clayey strata (α) =			0.5		
Bearing Capacity	Factor $(N_c) =$			9.0		
Height of the und	er reamed portion $(L_2) =$			175.25 cm		
Length of pile ste	$m(L_1) =$			375.00 cm		
Lateral Surface A	area of stem $(A_s) =$			35312.69 cm^2		
Ultimate Bearing	g Capacity =					
$Q_u = A_p N_c C_p + A$	$A_a N_c C'_a + \alpha C_a A_s$					
$= (707.13 \times 9 \times 10^{-1})$	0.46) + (3712.43 X 9 X 0.4	$(3) + (0.5 \times 0.43 \times 0.43)$	K 35312.69)			
= 2927.518	+ 14367.104	+7592.228				
= 24886.85 kg or	24.88 tonne					
Considering the f	actor of safety as 2.5 the sa	fe load bearing ca	pacity of 300mm	dia & 6m long single under reamed		
bored pile is 24.8	8/2.5 = 9.952 tons only.					
Load carrying ca	apacity of single under re	amed bored cast	in-situ piles (IS-2	911 part-III, Clause 5.2.3.1) (a)		
Bore Hole No.2						
Type of Pile: Sing	gle under reamed bored pile	e				
Length of Pile (L):			6.0m		
Effective Length	of Pile (L _e):		5.5m			
Friction compone	ent not considered (1):			0.5m		
b) Bearing	& Friction in clayey stra	ta (0.5m – 6.0m i	.e. 5.5m)			
Length of Pile in	clayey strata $(L_e) =$			550cm		
Diameter of Pile	(D) =			30cm		
Under reamed bu	lb dia =		/5m			
Cross Sectional a	rea of pile stem $(A_p) =$.2	/U/.14cm ²		
Cross Sectional a	rea of under reamed bulb ($\mathbf{A}_{\mathrm{a}}) = \pi/4 \left(\mathbf{D}_{\mathrm{u}}^{2} - \mathbf{D} \right)$) =	3/12.43cm ²		
Cohesion of Soil	around the toe $(C_p) =$			0.48 kg/cm ⁻		

Average cohesion of the soil along the pile stem = 0.45 kg/cm^2 Average cohesion of the soil around the under ream bulb (C'_a) = 0.45 kg/cm^2 Reduction Factor for clayev strata (α) = 0.5 Bearing Capacity Factor $(N_c) =$ 9.0 Height of the under reamed portion $(L_2) =$ 175.25 cm Length of pile stem $(L_1) =$ 375.00 cm 35312.69 cm^2 Lateral Surface Area of stem $(A_s) =$ Ultimate Bearing Capacity = $Q_u = A_p N_c C_p + A_a N_c C_a + \alpha C_a A_s$ $= (707.13 \times 9 \times 0.48) + (3712.43 \times 9 \times 0.45) + (0.5 \times 0.45 \times 353120.69)$ = 3054.8 + 15035.35 + 7945.35= 26035.5 kg or 26.035 t/m²

Considering the factor of safety as 2.5 the safe load bearing capacity of 300mm dia & 6m long single under reamed bored pile is 26.035/2.5 = 10.414 tonne only.

Conclusion

The study area is that zone where the importance of residential apartments and buildings are increasing day by day. Considering the importance of utility based on the present scenario the investigated results has been reviewed to ascertain the suitable type of foundation depending on stability and economy. The foundation may be shallow or deep but the most suitable type will be deep foundation for the following setbacks.

- 1. Soil bearing capacity is suitable to some extent for shallow foundation at a depth of 3m.
- 2. If shallow foundation of any suitable geometrical shape is suggested then the size of foundation will become too large as the SBC is very less and simultaneously gives un-economical foundation.
- 3. The soil characteristics below 3m depth show a drastic increase in differential free swell (DFS) and Plasticity Index Value (PIV).
- 4. This character indicates the soil is highly expansive in nature.
- 5. The pressure bulb lies in the soil which exhibits high compressibility, shrinkage and extremely high swelling characteristics under very little load. The permeability is extremely low.
- 6. Considering the above constraints in providing shallow foundation the alternative i.e. deep foundation/pile foundation is suggested.

References

 Bureau of Indian Standards, 1981: Indian Standard Code of Practice for Determination of Breaking Capacity of Shallow Foundations (First Revision) Sixth Reprint February 1998, IS: 6403-1981, 15.

- [2] Bureau of Indian Standards, 1980: Indian Standard Code of Practice for Split Spoon Sampler: ZI 3089, IS 9640-1980, 8.
- [3] Bureau of Indian Standards, 1982: Indian Standard Code of Practice for Standard Penetration for Soil (First Revision) Third Reprint March 1997, IS: 2131-1981.
- [4] Bureau of Indian Standards, 1979: Indian Standard Code of Practice for Subsurface Investigation for Foundations (First Revision), Second Reprint, November 1985, IS: 1892-1979.
- [5] Bureau of Indian Standards, 1973: Indian Standard Code of Practice for Preparation of Dry Soil a sample for Various Tests, IS: 2720-1973, Part-II (Revision 2).
- [6] Bureau of Indian Standards, 1980: Indian Standard Code of Practice for Determination of Specific Gravity of Soil, IS: 2720-1980, Part-XIII.
- Bureau of Indian Standards, 1973: Indian Standard Code of Practice for Determination of Unconfined Compressive Strength IS: 2720-1973, Part-X.
- [8] Bureau of Indian Standards, 1978: Indian Standard Code of Practice for Determination of Shear Strength Parameters of a Specimen Tested In Unconsolidated Undrained Triaxial Compression without the Measurement of Pore Water Pressure, IS: 2720-1978, Part-XI.
- [9] Bureau of Indian Standards, 1978: Indian Standard Code of Practice for Determination of Shear Strength Parameters of a Specimen Tested In Unconsolidated Undrained Triaxial Compression with the Measurement of Pore Water Pressure, IS: 2720-1978, Part-XII.
- [10] Bureau of Indian Standards, 1978: Indian Standard Code of Practice for Design and

construction of pile foundation, IS: 2911-1998, Part-III.

[11] Mishra A. K., et al. A New Technology of Marble Slurry Waste Utilization in Roads. Journal of Scientific and Industrial Research. 2010. 69; 67-72.